Mechanism and analyses for extracting photosynthetic electrons using exogenous quinones - what makes a good extraction pathway?

نویسندگان

  • G Longatte
  • F Rappaport
  • F-A Wollman
  • M Guille-Collignon
  • F Lemaître
چکیده

Plants or algae take many benefits from oxygenic photosynthesis by converting solar energy into chemical energy through the synthesis of carbohydrates from carbon dioxide and water. However, the overall yield of this process is rather low (about 4% of the total energy available from sunlight is converted into chemical energy). This is the principal reason why recently many studies have been devoted to extraction of photosynthetic electrons in order to produce a sustainable electric current. Practically, the electron transfer occurs between the photosynthetic organism and an electrode and can be assisted by an exogenous mediator, mainly a quinone. In this regard, we recently reported on a method involving fluorescence measurements to estimate the ability of different quinones to extract photosynthetic electrons from a mutant of Chlamydomonas reinhardtii. In the present work, we used the same kind of methodology to establish a zone diagram for predicting the most suitable experimental conditions to extract photoelectrons from intact algae (quinone concentration and light intensity) as a function of the purpose of the study. This will provide further insights into the extraction mechanism of photosynthetic electrons using exogenous quinones. Indeed fluorescence measurements allowed us to model the capacity of photosynthetic algae to donate electrons to an exogenous quinone by considering a numerical parameter called "open center ratio" which is related to the Photosystem II acceptor redox state. Then, using it as a proxy for investigating the extraction of photosynthetic electrons by means of an exogenous quinone, 2,6-DCBQ, we suggested an extraction mechanism that was globally found consistent with the experimentally extracted parameters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of photosynthetic electrons derivation by exogenous redox mediators.

Oxygenic photosynthesis is the complex process that occurs in plants or algae by which the energy from the sun is converted into an electrochemical potential that drives the assimilation of carbon dioxide and the synthesis of carbohydrates. Quinones belong to a family of species commonly found in key processes of the Living, like photosynthesis or respiration, in which they act as electron tran...

متن کامل

A Rapid Method for the Extraction and Analysis of Carotenoids and Other Hydrophobic Substances Suitable for Systems Biology Studies with Photosynthetic Bacteria

A simple, rapid, and inexpensive extraction method for carotenoids and other non-polar compounds present in phototrophic bacteria has been developed. The method, which has been extensively tested on the phototrophic purple non-sulphur bacterium Rhodospirillum rubrum, is suitable for extracting large numbers of samples, which is common in systems biology studies, and yields material suitable for...

متن کامل

Redesigning the QA binding site of Photosystem II allows reduction of exogenous quinones

Strategies to harness photosynthesis from living organisms to generate electrical power have long been considered, yet efficiency remains low. Here, we aimed to reroute photosynthetic electron flow in photosynthetic organisms without compromising their phototrophic properties. We show that 2,6-dimethyl-p-benzoquinone (DMBQ) can be used as an electron mediator to assess the efficiency of mutatio...

متن کامل

Mycobacterium tuberculosis Type II NADH-Menaquinone Oxidoreductase Catalyzes Electron Transfer through a Two-Site Ping-Pong Mechanism and Has Two Quinone-Binding Sites

Type II NADH-quinone oxidoreductase (NDH-2) catalyzes the transfer electrons from NADH to the quinone pool and plays an essential role in the oxidative phosphorylation system of Mycobacterium tuberculosis (Mtb). The absence of NDH-2 in the mammalian mitochondrial electron transport chain makes this enzyme an attractive target for antibiotic development. To fully establish the kinetic properties...

متن کامل

Steady-state kinetic analyses of photosystem II activity catalyzed by lipophilic electron acceptors.

Steady-state kinetic analyses of the Photosystem II activity elicited by quinones and quinonediimines in KCN/Hg-inhibited chloroplasts reveal that: 1. Quinones generate a single reaction in which one quinone competes with another for photoreduction by Photosystem II. 2. Quinonediimines also compete with one another for photoreduction, but the electron transport activity elicited by quinonediimi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology

دوره 15 8  شماره 

صفحات  -

تاریخ انتشار 2016